EXERCISES [MAI 2.7-2.8] COMPOSITION – INVERSE FUNCTIONS SOLUTIONS

Compiled by: Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. (a)
$$(f \circ g)(x) = 10 - 10x$$
 $(g \circ f)(x) = 50 - 10x$
(b) $f^{-1}(x) = (10 - x)/2$,
(c) $g^{-1}(10) = 2$
(d) $(f^{-1}\circ g)(x) = (10 - 5x)/2$, $(g \circ f)^{-1}(x) = (50 - x)/10$
(e) $(f \circ f)(x) = 4x - 10$ $(g \circ g)(x) = 25x$
2. (a) (i) $(f \circ g)(x) = 2(5x+3)+5 = 10x+11$, then $(f \circ g)(1) = 21$
(ii) $(f \circ g)(1) = f(g(1)) = f(8) = 21$
(b) (i) $f(x) = y \Leftrightarrow 2x+5 = y \Leftrightarrow x = (y - 5)/2$ so $f^{-1}(x) = (x - 5)/2$, then $f^{-1}(25) = 10$
(c) $(g \circ f)(1) = g(f(1)) = g(7) = 38$
 $g(x) = 53 \Leftrightarrow 5x+3 = 53 \Leftrightarrow x = 10$, so $g^{-1}(25) = 10$.
3. (a) $g(3) = 1$ $f^{-1}(3) = 4$
(b) $(f \circ g)(2) = -1$
(c) $(g \circ g)(3) = 5$
(d) $x = 1$
4. (a) $(g^{-1} \circ f)(4) = 3$
(b) $x = 1$
(c) $(g^{-1} \circ g)(2) = 2$
5. (a) $2x + 1 = y \Leftrightarrow x = \frac{y - 1}{2} \Leftrightarrow f^{-1}(x) = \frac{x - 1}{2}$
(b) $g(f(-2)) = g(-3) = 3(-3)^2 - 4 = 23$
(c) $f(g(x)) = f(3x^2 - 4) = 2(3x^2 - 4) + 1 = 6x^2 - 7$
6. $\sqrt{3 - 2x} = 5 \Leftrightarrow 3 - 2x = 25 \Leftrightarrow -2x = 22 \Leftrightarrow x = -11$

OR

Let
$$y = \sqrt{3-2x} \Rightarrow y^2 = 3-2x \Rightarrow x = \frac{3-y^2}{2} \Rightarrow f^{-1}(x) = \frac{3-x^2}{2}$$
$$\Rightarrow f^{-1}(5) = \frac{3-25}{2} = -11$$

7. (a)
$$(h \circ g)(x) = \frac{5(3x-2)}{(3x-2)-4} = \frac{5(3x-2)}{(3x-6)} = \frac{15x-10}{3x-6}$$

(b) $x = \frac{2}{3} (=0.667)$
8. (a) $(f \circ g): x \mapsto 3(x+2) = 3x+6$
(b) **METHOD 1**
 $f^{-1}(x) = \frac{x}{3} g^{-1}(x) = x-2$
 $f^{-1}(18) + g^{-1}(18) = 6 + 16 = 22$
METHOD 2
 $3x = 18, x+2 = 18$
 $x = 6, x = 16$
 $f^{-1}(18) + g^{-1}(18) = 6 + 16 = 22$
9. (a) $g^{-1}(x) = \frac{x+3}{2}$
(b) **METHOD 1**
 $g(4) = 5, f(5) = 25$
METHOD 2
 $(f \circ g)(x) = (2x-3)^2$
 $(f \circ g)(4) = (2 \times 4 - 3)^2 = 25$
10. (a) $(g \circ f)(x) = 7 - 2x + 3 = 10 - 2x$
(b) $g^{-1}(x) = x - 3$
(c) **METHOD 1**
 $g^{-1}(5) = 2, f(2) = 3$
METHOD 2
 $(f \circ g^{-1})(x) = 7 - 2(x-3), 13 - 2x$ so $(f \circ g^{-1})(5) = 3$
11. (a) **METHOD 1**
 $f(3) = \sqrt{7}$ $(g \circ f)(3) = 7$
METHOD 2
 $(g \circ f)(x) = \sqrt{x+4^2} = x + 4$
 $(g \circ f)(3) = 7$
(b) $f^{-1}(x) = x^2 - 4$
(c) $x \ge 0$
12. (a) **METHOD 1**
For $f(-2) = -12$
 $(g \circ f)(x) = 2x^3 - 8$
 $(g \circ f)(x) = 2x^3 - 8$

(b)
$$x^3 - 4 = y \iff x = \sqrt[3]{y+4}$$
 so $f^{-1}(x) = \sqrt[3]{(x+4)}$

13. (a)
$$3x + 5 = 2 \Leftrightarrow x = -1$$

 $f^{-1}(2) = -1$
(b) $g(f(-4)) = g(-12 + 5) = g(-7) = 2(1 + 7) = 16$

14. (a)
$$f(3) = 2^{3}$$

 $(g \circ f)(3) = \frac{2^{3}}{2^{3} - 2} = \frac{8}{6} = \frac{4}{3}$
(b) $\frac{x}{x - 2} = y \Leftrightarrow xy - 2y = x \Leftrightarrow x (y - 1) = 2y \Leftrightarrow x = \frac{2y}{y - 1}$ so $y = \frac{2x}{(x - 1)}$
 $y = \frac{10}{(5 - 1)} = 2.5$

15. (a)
$$\frac{x}{x+5} = y \Leftrightarrow x = xy + 5y \Leftrightarrow x - xy = 5y \Leftrightarrow x(1-y) = 5y \Leftrightarrow x = \frac{5y}{1-y}$$

 $f^{-1}(x) = \frac{5x}{1-x}$
(b) $R = \frac{5S}{1-S}$
16. (a) $(f \circ g)(x) = \frac{2}{x-3}$
(b) $(f \circ g)(4) = 2$
(c) $P = \frac{2}{S-3}$
(d) $P = 2$
17. Just confirm that $f^{-1}(x) = \frac{2x-3}{3x-2}$ and $(f \circ f)(x) = x$
18. (a) $y = \frac{6-x}{2} = x = 6 - 2y$
 $= > g^{-1}(x) = 6 - 2x$

(b)
$$(f \circ g^{-1})(x) = 4[(6 - 2x) - 1] = 4(5 - 2x) = 20 - 8x$$

 $20 - 8x = 4 \Longrightarrow 8x = 16 \Longrightarrow x = 2$

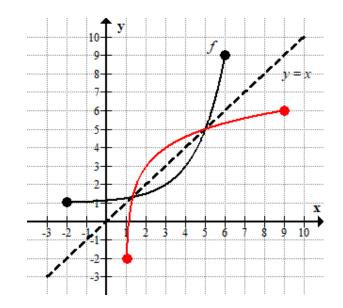
19.
$$(f \circ g) : x \mapsto x^3 + 1$$

 $(f \circ g)^{-1} : x \mapsto (x-1)^{1/3}$
20. (a) $h(x) = \frac{4}{x+2} - 1$ $\left(=\frac{2-x}{2+x}\right)$
(b) $\frac{4}{x+2} - 1 = y \Leftrightarrow \frac{4}{x+2} = y + 1 \Leftrightarrow \frac{x+2}{4} = \frac{1}{y+1} \Leftrightarrow x + 2 = \frac{4}{y+1} \Leftrightarrow x = \frac{4}{y+1} - 2$
(c) (i) $h(x)$ represents an expression of K in terms of M
(ii) $h^{-1}(x)$ represents the value K when $M = 3$

(iv) $h^{-1}(0.5)$ represents the value M when K = 0.5

21.
$$f^{-1}(x) = \frac{x+5}{3}$$
 $g^{-1}(x) = x+2$
 $(f^{-1} \circ g)(x) = \frac{x+3}{3}$ $(g^{-1} \circ f)(x) = 3x-3$
 $\frac{x+3}{3} = 3x-3$ $(x+3=9x-9) \implies x = \frac{12}{8} = \frac{3}{2}$

22.



23. (a)
$$f(x) = (x-3)^2 + 4 = x^2 - 6x + 9 + 4 = x^2 - 6x + 13$$

(b) $y = (x-3)^2 + 4$
 $y-4 = (x-3)^2$
 $\sqrt{y-4} = x-3$
 $\sqrt{y-4} + 3 = x$
 $\Rightarrow f^{-1}(x) = \sqrt{x-4} + 3$

(c)
$$x \ge 3$$
 and $y \ge 4$

(d)
$$x \ge 4$$
 and $y \ge 3$

24.

$$y = \frac{3x-4}{x+2}$$

$$xy + 2y = 3x - 4$$

simplifying $x(y-3) = -2y - 4$
expressing y in terms of x, $x = \frac{2y+4}{3-y}$
interchanging x and y, $y = \frac{2x+4}{3-x}$

$$f^{-1}(x) = \frac{2x+4}{3-x}$$

(b) Domain $x \neq 3$, $(x \in \mathbb{R} \text{ not required})$

(c) Since f is the inverse of
$$f^{-1}$$
: $D = \frac{3F-4}{F+2}$

GIVEN $f \circ g$ and one of the functions find the other one

25. (a)
$$(f \circ g)(x) = 2(5x+3) + 5 = 10x + 6 + 5 = 10x + 11$$

(b) $f^{-1}(x) = \frac{x-5}{2}$
Since $g = f^{-1} \circ (f \circ g)$, $g(x) = \frac{(10x+11)-5}{2} = \frac{10x+6}{2} = 5x+3$
(c) $g^{-1}(x) = \frac{x-3}{5}$
Since $f = (f \circ g) \circ g^{-1}$, $f(x) = 10\left(\frac{x-3}{5}\right) + 11 = 2(x-3) + 11 = 2x - 6 + 11 = 2x + 5$
26. (a) $f = h \circ g^{-1}$
(b) $g = f^{-1} \circ h$
(c) $g = f^{-1} \circ h$
(d) $g = f^{-1} \circ k \circ h^{-1}$
27. METHOD A
 $f^{-1}(x) = \sqrt[3]{x}$
(a) Since $g = (g \circ f) \circ f^{-1}$, $g(x) = \sqrt[3]{x+1}$
(b) Since $g = (g \circ f) \circ f^{-1}$, $g(x) = \sqrt[3]{x+1}$
METHOD B
(a) $f(g(x)) = x + 1 \Rightarrow [g(x)]^3 = x + 1$
so $g(x) = \sqrt[3]{x+1}$
(b) $g(f(x)) = x + 1 \Rightarrow g(x^3) = x + 1$
so $g(x) = \sqrt[3]{x+1}$
28. METHOD A
 $f^{-1}(x) = \sqrt[3]{x+1}$

- (a) Since $g = f^{-1} \circ (f \circ g)$, $g(x) = \sqrt[3]{2x+1+1} = \sqrt[3]{2x+2}$
- (b) Since $g = (g \circ f) \circ f^{-1}$, $g(x) = 2\sqrt[3]{x+1} + 1$

METHOD B

(a) $f(g(x)) = x + 1 \Rightarrow [g(x)]^3 - 1 = 2x + 1$ so $g(x) = \sqrt[3]{2x+2}$ (b) $g(f(x)) = 2x + 1 \Rightarrow g(x^3 - 1) = 2x + 1$ Set $y = x^3 - 1$, then $x = \sqrt[3]{y+1}$, so $g(x) = 2\sqrt[3]{x+1} + 1$

$$g^{-1}(x) = \frac{x+1}{2}$$

$$f(x) = f \circ g \circ g^{-1}(x) = \frac{\frac{x+1}{2} + 1}{2}$$

$$= \frac{x+3}{4}$$

$$f(x-3) = \frac{(x-3)+3}{4} = \frac{x}{4}$$

(d) $Q = (P-1)^2$, It is the value where P and Q coincide.